27 research outputs found

    Tailoring microcombs with inverse-designed, meta-dispersion microresonators

    Full text link
    Nonlinear-wave mixing in optical microresonators offers new perspectives to generate compact optical-frequency microcombs, which enable an ever-growing number of applications. Microcombs exhibit a spectral profile that is primarily determined by their microresonator's dispersion; an example is the sech2 \operatorname{sech}^2 spectrum of dissipative Kerr solitons under anomalous group-velocity dispersion. Here, we introduce an inverse-design approach to spectrally shape microcombs, by optimizing an arbitrary meta-dispersion in a resonator. By incorporating the system's governing equation into a genetic algorithm, we are able to efficiently identify a dispersion profile that produces a microcomb closely matching a user-defined target spectrum, such as spectrally-flat combs or near-Gaussian pulses. We show a concrete implementation of these intricate optimized dispersion profiles, using selective bidirectional-mode hybridization in photonic-crystal resonators. Moreover, we fabricate and explore several microcomb generators with such flexible `meta' dispersion control. Their dispersion is not only controlled by the waveguide composing the resonator, but also by a corrugation inside the resonator, which geometrically controls the spectral distribution of the bidirectional coupling in the resonator. This approach provides programmable mode-by-mode frequency splitting and thus greatly increases the design space for controlling the nonlinear dynamics of optical states such as Kerr solitons.Comment: 16 pages, includes S

    Stably accessing octave-spanning microresonator frequency combs in the soliton regime

    Full text link
    Microresonator frequency combs can be an enabling technology for optical frequency synthesis and timekeeping in low size, weight, and power architectures. Such systems require comb operation in low-noise, phase-coherent states such as solitons, with broad spectral bandwidths (e.g., octave-spanning) for self-referencing to detect the carrier-envelope offset frequency. However, stably accessing such states is complicated by thermo-optic dispersion. For example, in the Si3N4 platform, precisely dispersion-engineered structures can support broadband operation, but microsecond thermal time constants have necessitated fast pump power or frequency control to stabilize the solitons. In contrast, here we consider how broadband soliton states can be accessed with simple pump laser frequency tuning, at a rate much slower than the thermal dynamics. We demonstrate octave-spanning soliton frequency combs in Si3N4 microresonators, including the generation of a multi-soliton state with a pump power near 40 mW and a single-soliton state with a pump power near 120 mW. We also develop a simplified two-step analysis to explain how these states are accessed in a thermally stable way without fast control of the pump laser, and outline the required thermal properties for such operation. Our model agrees with experimental results as well as numerical simulations based on a Lugiato-Lefever equation that incorporates thermo-optic dispersion. Moreover, it also explains an experimental observation that a member of an adjacent mode family on the red-detuned side of the pump mode can mitigate the thermal requirements for accessing soliton states

    A Kerr-microresonator optical clockwork

    Full text link
    Kerr microresonators generate interesting and useful fundamental states of electromagnetic radiation through nonlinear interactions of continuous-wave (CW) laser light. Using photonic-integration techniques, functional devices with low noise, small size, low-power consumption, scalable fabrication, and heterogeneous combinations of photonics and electronics can be realized. Kerr solitons, which stably circulate in a Kerr microresonator, have emerged as a source of coherent, ultrafast pulse trains and ultra-broadband optical-frequency combs. Using the f-2f technique, Kerr combs support carrier-envelope-offset phase stabilization for optical synthesis and metrology. In this paper, we introduce a Kerr-microresonator optical clockwork based on optical-frequency division (OFD), which is a powerful technique to transfer the fractional-frequency stability of an optical clock to a lower frequency electronic clock signal. The clockwork presented here is based on a silicon-nitride (Si3_3N4_4) microresonator that supports an optical-frequency comb composed of soliton pulses at 1 THz repetition rate. By electro-optic phase modulation of the entire Si3_3N4_4 comb, we arbitrarily generate additional CW modes between the Si3_3N4_4 comb modes; operationally, this reduces the pulse train repetition frequency and can be used to implement OFD to the microwave domain. Our experiments characterize the residual frequency noise of this Kerr-microresonator clockwork to one part in 101710^{17}, which opens the possibility of using Kerr combs with high performance optical clocks. In addition, the photonic integration and 1 THz resolution of the Si3_3N4_4 frequency comb makes it appealing for broadband, low-resolution liquid-phase absorption spectroscopy, which we demonstrate with near infrared measurements of water, lipids, and organic solvents
    corecore